Simulation-Based Schedule Analysis

Steve Miller
OSD Cost Analysis Improvement Group

January 31, 2003

Study Goals

- Improve understanding of the causes of development phase cost growth
- Improve precision and accuracy of weapon system development phase cost estimates
- Generate ideas for new approaches for development phase estimates

Hypothesis

For a weapon system's development phase:

- Cost is proportional to schedule
- Distribution of activity durations are right-skewed
- People tend to think about activity durations in terms of most likely values, vice means or medians
- Little or no allowance is made to the probabilistic nature of the durations or their network interplay

Example: Satellite Development Program

Guidelines for Parameter Estimation

- Quantize schedule uncertainty into three or four levels (e.g, low, medium, high)
- For each level, generate statistics (e.g., ratios, percentiles, probabilities) that provide insight into the relative risk assessments
- Mathematically relate these statistics to the parameters of the distribution

Estimating Distribution Parameters Based Upon a Risk Assessment

Risk Assessment	ML/Low	Pr(t>ML)	ML	a (low)	c (shape)	b (scale)
Input	By Defn	By Defn	Input	Calculated	Calculated	Calculated
Low	1.15	0.60	10.00	8.70	2.04	1.81
Med	1.20	0.70	10.00	8.33	1.55	3.24
High	1.25	0.80	10.00	8.00	1.29	6.41

Measures of Dispersion (Risk)

- ML/Low: Ratio of Most Likely (ML) value to Minimum (Low)
- Pr(t>ML): Probability of a duration exceeding the ML value
- Shape Parameter (c=2: Rayleigh, c=1: Exponential)

Schedule Risk Distributions

Example Risk Values

RDT&E Program	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6
	System Concept Definition	Bus Design	P/L Design	Ground Segment Design	IA&T Design	Bus Development
Risk Level	low	low	high	med	med	low
Most Likely (months)	12.0	9.0	9.0	8.0	3.0	28.0
Predecessor Phases	N/A	1	1	1	1,2,3	5
c(shape)	2.0	2.0	1.3	1.6	1.6	2.0
b (scale)	2.2	1.6	9.6	3.1	1.2	5.1
a (low)	10.4	7.8	6.0	6.4	2.4	24.3

RDT&E Program	Phase 6	Phase 7	Phase 8	Phase 9	Phase 10	Phase 11
	Bus Development	P/L Development	Grd Seg Development	Space Segment IA&T	System Level IA&T	Deployment
Risk Level	low	med	med	high	med	med
Most Likely (months)	28.0	30.0	36.0	9.0	12.0	9.0
Predecessor Phases	5	5	5	6,7	8,9	10
c(shape)	2.0	1.6	1.6	1.3	1.6	1.6
b (scale)	5.1	11.6	14.0	9.6	4.7	3.5
a (low)	24.3	24.0	28.8	6.0	9.6	7.2

Resulting Distribution of Development Completion Time

Sum of Modes along Critical path is 81 months – Less than 1 percentile

Sensitivity Analysis

(All Risk Assessments Set to Low)

Sum of Modes along Critical path is 81 months – Less than 4th percentile

Implication for Evolutionary Acquisition / Spiral Development Programs

- EA development activities are fragmented into Blocks and Spirals
- Because little data exist to cost EA development programs, each spiral's cost is typically developed based on the contractor's bottom-up assessment
 - Estimates are prone to schedule optimism
- For budget constrained schedule unconstrained EA development programs when a capability can be fielded is the critical question
 - Schedule models become necessary for independent review groups

Some Ideas for Improving Methodologies

- Development programs should be estimated based on their content not as factors of hardware costs
- Schedule should be a key cost driver of development cost CERs
- Methods for translating planning durations into realistic schedule are needed
- Anticipated and actual schedule data needs to be captured in conjunction with costs

Conclusions

- Schedule optimism may explain much of historical cost growth in development programs
 - Especially true for EA programs which tend to rely more on bottomsup estimates for each spiral upgrade
- Program development cost uncertainty (risk) should reflect realistic schedule uncertainty
- Accurate schedule estimation is key to good cost estimates
 - Even if parametric or analogy approaches are used to develop estimates, relating the estimates to schedule provides a good cross-check
- Methods are needed to more closely link schedule to program development cost